3.206 \(\int \frac{\sin ^3(a+b x)}{(d \cos (a+b x))^{3/2}} \, dx\)

Optimal. Leaf size=43 \[ \frac{2 (d \cos (a+b x))^{3/2}}{3 b d^3}+\frac{2}{b d \sqrt{d \cos (a+b x)}} \]

[Out]

2/(b*d*Sqrt[d*Cos[a + b*x]]) + (2*(d*Cos[a + b*x])^(3/2))/(3*b*d^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0513659, antiderivative size = 43, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {2565, 14} \[ \frac{2 (d \cos (a+b x))^{3/2}}{3 b d^3}+\frac{2}{b d \sqrt{d \cos (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*x]^3/(d*Cos[a + b*x])^(3/2),x]

[Out]

2/(b*d*Sqrt[d*Cos[a + b*x]]) + (2*(d*Cos[a + b*x])^(3/2))/(3*b*d^3)

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin{align*} \int \frac{\sin ^3(a+b x)}{(d \cos (a+b x))^{3/2}} \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{1-\frac{x^2}{d^2}}{x^{3/2}} \, dx,x,d \cos (a+b x)\right )}{b d}\\ &=-\frac{\operatorname{Subst}\left (\int \left (\frac{1}{x^{3/2}}-\frac{\sqrt{x}}{d^2}\right ) \, dx,x,d \cos (a+b x)\right )}{b d}\\ &=\frac{2}{b d \sqrt{d \cos (a+b x)}}+\frac{2 (d \cos (a+b x))^{3/2}}{3 b d^3}\\ \end{align*}

Mathematica [A]  time = 0.0747173, size = 46, normalized size = 1.07 \[ -\frac{2 \left (\sin ^2(a+b x)+4 \sqrt [4]{\cos ^2(a+b x)}-4\right )}{3 b d \sqrt{d \cos (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*x]^3/(d*Cos[a + b*x])^(3/2),x]

[Out]

(-2*(-4 + 4*(Cos[a + b*x]^2)^(1/4) + Sin[a + b*x]^2))/(3*b*d*Sqrt[d*Cos[a + b*x]])

________________________________________________________________________________________

Maple [A]  time = 0.1, size = 70, normalized size = 1.6 \begin{align*} -{\frac{8}{3\,{d}^{2}b}\sqrt{-2\, \left ( \sin \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}d+d} \left ( \left ( \sin \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{4}- \left ( \sin \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{2}+1 \right ) \left ( 2\, \left ( \sin \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}-1 \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(b*x+a)^3/(d*cos(b*x+a))^(3/2),x)

[Out]

-8/3/d^2*(-2*sin(1/2*b*x+1/2*a)^2*d+d)^(1/2)*(sin(1/2*b*x+1/2*a)^4-sin(1/2*b*x+1/2*a)^2+1)/(2*sin(1/2*b*x+1/2*
a)^2-1)/b

________________________________________________________________________________________

Maxima [A]  time = 0.983387, size = 47, normalized size = 1.09 \begin{align*} \frac{2 \,{\left (\frac{3}{\sqrt{d \cos \left (b x + a\right )}} + \frac{\left (d \cos \left (b x + a\right )\right )^{\frac{3}{2}}}{d^{2}}\right )}}{3 \, b d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^3/(d*cos(b*x+a))^(3/2),x, algorithm="maxima")

[Out]

2/3*(3/sqrt(d*cos(b*x + a)) + (d*cos(b*x + a))^(3/2)/d^2)/(b*d)

________________________________________________________________________________________

Fricas [A]  time = 1.87155, size = 92, normalized size = 2.14 \begin{align*} \frac{2 \, \sqrt{d \cos \left (b x + a\right )}{\left (\cos \left (b x + a\right )^{2} + 3\right )}}{3 \, b d^{2} \cos \left (b x + a\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^3/(d*cos(b*x+a))^(3/2),x, algorithm="fricas")

[Out]

2/3*sqrt(d*cos(b*x + a))*(cos(b*x + a)^2 + 3)/(b*d^2*cos(b*x + a))

________________________________________________________________________________________

Sympy [A]  time = 6.16376, size = 61, normalized size = 1.42 \begin{align*} \begin{cases} \frac{2 \sin ^{2}{\left (a + b x \right )}}{b d^{\frac{3}{2}} \sqrt{\cos{\left (a + b x \right )}}} + \frac{8 \cos ^{\frac{3}{2}}{\left (a + b x \right )}}{3 b d^{\frac{3}{2}}} & \text{for}\: b \neq 0 \\\frac{x \sin ^{3}{\left (a \right )}}{\left (d \cos{\left (a \right )}\right )^{\frac{3}{2}}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)**3/(d*cos(b*x+a))**(3/2),x)

[Out]

Piecewise((2*sin(a + b*x)**2/(b*d**(3/2)*sqrt(cos(a + b*x))) + 8*cos(a + b*x)**(3/2)/(3*b*d**(3/2)), Ne(b, 0))
, (x*sin(a)**3/(d*cos(a))**(3/2), True))

________________________________________________________________________________________

Giac [A]  time = 1.20139, size = 57, normalized size = 1.33 \begin{align*} \frac{2 \,{\left (\sqrt{d \cos \left (b x + a\right )} d \cos \left (b x + a\right ) + \frac{3 \, d^{2}}{\sqrt{d \cos \left (b x + a\right )}}\right )}}{3 \, b d^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^3/(d*cos(b*x+a))^(3/2),x, algorithm="giac")

[Out]

2/3*(sqrt(d*cos(b*x + a))*d*cos(b*x + a) + 3*d^2/sqrt(d*cos(b*x + a)))/(b*d^3)